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Scaling laws of physics are derived from extreme value distributions. Small jump 
processes that comprise a compound Poisson distribution generate the asymptotic 
distributions of stable laws. These extreme value distributions, or their tails, can 
be expressed in terms of the entropy decrease. As an example, the scaling law 
for the radius of gyration of a polymer is derived which is comparable to Flory's 
formula. The entropy is identified by its property of concavity, which is shown 
to coincide with Boltzmann's probabilistic definition for first passage in a random 
walk. A more general definition is required for nonintegral dimensions. The 
relation to mean-field theory of the kinetic Weiss-Ising model is shown and this 
distribution of the order parameter is governed by an asymptotic distribution 
for the smallest value rather than a normal distribution. Finally, the logarithm 
of the sample size is shown to be the yardstick for the decrease in entropy. 

1. I N T R O D U C T I O N  

T h e r m o d y n a m i c s ,  which  is d e d i c a t e d  to the  s tudy  o f  sys tems c o m p r i s e d  
o f  an ex t r eme ly  large  n u m b e r  o f  i n d e p e n d e n t  and  iden t i ca l ly  d i s t r ibu ted  
(i . i .d.)  r a n d o m  var iab les ,  is f o u n d e d  on  the l imi t  laws o f  p r o b a b i l i t y  theory .  
The  fo rm o f  the  p r i o r  d i s t r ibu t ion ,  or  s t ruc ture  func t ion ,  con ta in ing  all  the  
r e l evan t  i n f o r m a t i o n  r ega rd ing  the  m e c h a n i c a l  na tu re  o f  the i so la ted  sys tem 
(Kh inch in ,  1949) d ic ta tes  that  the  p o s t e r i o r  d i s t r ibu t ion  ar i s ing  f rom the rma l  
con tac t  wi th  a hea t  reservoi r  will  be  a t t r ac ted  a s y m p t o t i c a l l y  to the  n o r m a l  
law as the  n u m b e r  o f  degrees  o f  f r e e d o m  increases  wi thou t  l imit .  

We  will be  in te res ted  in sys tems c o m p r i s e d  o f  i.i.d, r a n d o m  var iab les  
in which  a charac te r i s t i c  p a r a m e t e r  t ends  to infinity.  In  the  a sympto t i c  l imit ,  
the  p rocess  will  be  b rough t  in to  the  d o m a i n  o f  a t t r ac t ion  o f  a s table  law. 
The  ques t ion  o f  whe the r  the  sys tem will  be  gove rned  by  a n o r m a l  or  s tab le  
law d e p e n d s  u p o n  whe the r  the  va r i ance  is finite o r  not ,  respect ively .  Such 
sys tems are cha rac t e r i zed  by  an ini t ia l  d i s t r i bu t ion  which  is sca le - invar ian t ,  
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or a distribution which is said to preserve scaling. These distributions are 
characterized by their tail 

1 
1 - F ( u )  = Pr{ U >  u} ~- -~  (1) 

u 

for sufficiently large values of  u, where a is the characteristic exponent. An 
example of  such a process is a random walk in which the derivative of  (1) 
is the transition probability density for a single jump of  u steps (Barber 
and Ninham, 1970). Such types of inverse power laws have been considered 
to describe everything from word frequencies (Zipf, 1949) to the distribution 
of  incomes and have been much publicized by Mandelbrot  (1956, 1959, 
1960, 1963). 

In fact it would appear that there is a close relationship between our 
formulation and the fractal formulation in which (1) is interpreted as the 
number of  objects greater than u, N r ( U >  u). Then, on the basis of the 
analogy with (1) Mandelbrot  (1983) has proposed that 

1 
N r ( U >  u ) = - -  

U a 

and taking the logarithm of both sides gives the fractal dimension as 

In n 
a = (2) 

I n ( l / u )  

where n is the total number of  objects or parts into which a single object 
has been divided. The fractal formulation is completely deterministic and 
hinges on the analogy between Nr( U > u), the number of  events or objects 
greater than u, and P r ( U >  u), the probability of an event being greater 
than u. In Section 6 we will see that the probabilistic analog of (2) is the 
expression for the expected largest value u, in a populat ion of  size n, 

n P r ( U >  u,) = 1 (3) 

Unlike (2), which determines the fractal dimension in terms of the n parts 
into which a self-similar object has been divided and the scaling ratio 
u = n -~/~, the expected largest value Un is determined by the sample size n 
and the characteristic exponent a. 

In economics (1) is known as the Pareto (1897) distribution, which 
summarizes the fact that there are more poor  people than rich people. It 
has no mode and moments ---a do not exist. All stable distributions have 
characteristic exponents 0 < a < 2 and have infinite variance. These distribu- 
tions have some surprising and unexpected behavior. A simple scaling 
argument shows that U -  n ~/~. Considering strictly stable distributions for 
which a < 1, it is easy to see that the sample mean (UI+"  �9 "+ U , ) / n  will 
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have the same distribution as Uln -1+1/'~, which tends to infinity as n 
increases without limit. This means that the sum will be much larger than 
any one of  its components,  which implies that one term will grow exceedingly 
large and dominate the sum (Feller, 1971). This type of  unequal sharing is 
best contrasted with equal sharing, leading to the law of  equipartition of  
energy, in thermodynamics. 

2. THERMODYNAMICS VS. EXTREME VALUES 

In thermodynamics we are given a prior distribution, proportional to 
the volume of  phase space occupied by the system. It increases as some 
fixed power m of  the energy e and has a density, or the surface area, 
given by 

m--I 
E 

,O(e) = (4) 
r (m)  

O(e)  is referred to as the structure function (Khinchin, 1949), which contains 
all the relevant information concerning the mechanical structure of the 
isolated system prior to placing it in contact with a heat bath and other 
types of  reservoirs. Its Laplace transform 

~(/3) = e-~f~(s) de =/3 -m (5) 

is known as the partition function and/3  is the characteristic parameter of  
the heat reservoir, representing the "state of  nature" of  the system. The 
moments of  the posterior density 

e-~e 
f(e; fi)= ~---~ f~(e) (6) 

or canonical density, all diverge in the limit as /3-~ 0. Hence, /3 is not a 
dummy variable as in the usual definition of  the generating function, but 
must be given a physical meaning. With the aid of the second law, /3 is 
identified as the inverse temperature (measured in energy units), so that 
the expression for the average energy 

a l n ~  m 

a/3 /3 

is none other than the law of equipartition of  energy. 
The fact that (4) implies (5) and vice versa is a well-known Tauberian 

theorem (Feller, 1971). The initial distributions of extreme values are given 
in terms of their tails for large values of  the variate. If  F(u) is a probability 
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distribution with Laplace transform ~(A),  then the Laplace transform of  
its tail is 

Ioe-;~"[1-F(u)Jdu=lfo(1-e-a")dF(u)=-- 1 - ~ ( a )  
(7) 

where an integration by parts has been made. With the tail distribution 
given by (1), we obtain the analogous Tauberian result that each of  the 
relations 

and 

1 - ~ ( h ) - - h  '~ (8) 

1 
1-  F ( u ) -  r(l_------~ u-* (9) 

implies the other provided 0 < a < 1. Recalling that ln(1 - x )  - - x  as x ~ 0, 
we have In ~ - - ( 1 - ~ )  as h ~ 0, so that (8) gives 

~Z(A) ~ e - ~  (10) 

which implies that Z(A) is the Laplace transform of  an infinitely divisible 
probability distribution. 2 

We have therefore related the generating function of  a strictly stable 
distribution, having a characteristic exponent in the open interval (0, 1), to 
the generating function of  a compound Poisson process (7). It is possible 
to interpret the negative of  the tail ~ ( u ) = - [ 1 -  F (u ) ]  as the intensity of  
small, positive jump processes greater than u (de Finetti, 1970). The fact 
that ~(0)  is infinite simply means that there are an infinite number of very 
tiny jump processes in each interval. If  g~(u) were not known, it could be 
deduced from the facts that it must give a finite contribution to the variance 
S u2 dJ;(u) < oo with finite limits that contain the origin, and that n times 
distribution of  the intensity of  the jumps should have the same form as 
~ ( u )  itself (de Finetti, 1970). The resulting behavior is in direct contrast 
to thermodynamics,  where the partition of  a thermodynamic system into 
two large components of  the same size leads to the equal sharing of the 
system's energy. The most probable value of the energy of  either component  
is the mean value of  the energy. However, for strictly stable distributions 
(i.e., 0<t~ < 1), it appears that there is an overwhelming probability for 
one of  the components  to be much larger than the other. We will now show 
that this conjecture is indeed true by deriving an explicit expression for the 
asymptotic distribution. 

2We recall that the family of  stable laws is a subset  of  the set of  infinitely divisible distribution 
laws. 
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The exponential  Chebyshev inequality 

fo fo fo ~ d F ( x )  <- e a ~  d F ( x )  <~ e A~ e -ax  d F ( x )  

implies that 

(11) 

In Pr(U-< u)-< Au + In •(A) =-- S(A, u) 

The function S(A, u) is a saddle function which is strictly convex in A and 
weakly concave in u, as shown in Figure 1. Although this is a characteristic 
upper  bound for large deviations of  normal processes (Deuschel and 
Stroock, 1989), we shall derive a new result showing that the equality sign 
holds for S(A, u) = min with respect to the parameter  A, or in other words 

In P r ( U -  < u) = {Au + ln  ~(A)}min (12) 

Using the relation In ~ - ~ - ( 1 - ~ )  =-(o-A)"/c~,  in the limit as A--> 0, where 
cr represents the intensity of  the jumps,  we find 

as the stationary condition to (12). 
I f  ~. represents the inverse temperature and u the energy, then (13) 

predicts that the energy will increase as some root of  the temperature rather 

Fig. 1. The saddle function S(A, u) for a strictly stable distribution. 
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than linearly or as a power of  the temperature, which is the usual thermody- 
namic situation. For a system with a variable particle number, such as a 
photon gas, the temperature, which is proportional to the average kinetic 
energy, increases as the fourth root of  the energy. The extra energy is 
accounted for by particle creation (Hagedorn, 1965). On the other hand, 
(13) predicts that the temperature will increase as some power of  the energy 
which could be accounted for by particle destruction. 

Introducing (13) into (12), we come out with 

In Pr( U < - u) = S (u )  - So (14) 

where 

S ( u ) _  S o = _ l - a  (_~) ~/('-~) ,~ (15) 

defines the thermodynamic entropy S(u )  in terms of the concave function 
- u  -~'/(1-'~) and So is a constant, characterizing the entropy of  the unper- 
turbed reference state, as shown in Figure 2. Expression (14) is analogous 
to Boltzmann's principle for extreme value distributions. Since the exponen- 
tial of  (14) coincides with the cumulative distribution, we obtain the prob- 
ability density as 

f ( u )  ( - ~ ) l / ~  ~/(1-~)] = (16) 

O 
Fig. 2. Introducing the relation ~, =f(u) obtained from the stationary criterion back into the 
saddle function S(A, u) results in a strictly concave function S(u) whch is identified as the 
entropy. 
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The conventional derivation of  (16) uses the statistical independence 
of the random variables. I f  F ( u )  is the probability that a single observation 
will result in a value - u, then the probability that all of  the n independent 
observations on a continuous variable are ---u is F " ( u ) .  We may interpret 
this as giving the probability that u is the largest value among n independent 
observations (Gumbel,  1954, 1958). Assuming that the tail of  the initial 
probability distribution is of the Pareto type, (1), 

a 
1 - F ( u )  = - ~  

u 

with  no restrictions on the value o f  the characteristic exponent k, we have  

- an y '  

for n i.i.d, random variables. Then, using the well-known limit relation 
(1 - x / n )  ~ -> e -x gives 

Pr(M, ~ u) = F ' ( u )  = exp - (17) 

as n-~oe, where the scaling constant is s = ( a n )  ~/k and M , =  
max[ U , . . . ,  U,]. Comparing (14), where the entropy decrease is given by 
(15), to the logarithm of  (17) determines k =  a / ( 1 - a ) .  Hence, k varies 
from 0 to ec as o~ goes from 0 to 1. The limit of  large n is implicit in the 
derivation of  the asymptotic distribution (14), It is to be found in our 
assumption that the sum of a large number of  random variables has the 
compound Poisson distribution (de Finetti, 1929). 

Just as in thermodynamics, the stable distributions are infinitely divis- 
ible, meaning that a random variable can be considered to be the sum of  
any number of  i.i.d, components. The preservation of  "additivity" means 
that we can partition a system into components and ask how a random 
variable will be partitioned among the components. Partitioning our original 
system into two components labeled 1 and 2 with the total "energy" 
u = Ul + u2, we obtain for the distribution of ul 

f , ( u O f 2 ( u - u , )  

So f , ( u , ) f 2 (u  - ul) du, 

Unlike the thermodynamic situation illustrated in Figure 3, in which the 
energy is divided equally for subsystems having the same number of  degrees 
of  freedom, the strictly stable distribution shows a splitting in Figure 4 
above a certain threshold value of  the sum of the two addenda. The 
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The probability density of the first of  two components in a thermodynamic situation 
where each has the same number of  degrees of freedom. 
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Fig. 4. The probability density of  the first of  two components for a strictly stable distribution. 
Increasing the fixed sum of  the two variables leads to a splitting at approximately u = 2.5. The 
splitting accentuates as u is further increased. 
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characteristic exponent  is a = 1/2 and the threshold value is approxi-  
mately 5/2. 3 

3. TOWARD THE NORMAL DISTRIBUTION 

In the interval 1 < a < 2, the integral in the expression for the generating 
function of  the compound  Poisson process (7) fails to converge. A corrective 
or centering term uA is required. I f  such a term is subtracted in the integral 
and an equivalent term bA is added, the generating function will be left 
invariant. In analogy with Brownian motion, the b term would represent 
mean value. However,  this interpretation will be seen to be valid only for 
a = 2, while for 1 < a < 2, the b term must be interpreted as an upper  limit 
on the variate u. Hence,  in contrast to strictly stable distributions, where 
the reduced variate is unbound on the entire positive half-interval, we are 
now dealing with limited distributions whose variates can take on both 
positive and negative values. With the introduction of the correction term 
uh, the generating function becomes 

(c~ - 1)~ ( 1 - u A - e - ) - z - ~ d u  1 - ~ ( A )  = bA-~ F ( 2 -  a )  u 

=bA-(o'A)'~/a=-lnYE(A) as A->0 (18) 

which can be easily verified by differentiating twice with respect to A and 
then integrating twice. Expression (18) shows that the logarithm of  the 
generating function is a convex function of A, as it must be in order to 
ensure a positive-definite variance. For ce = 2, (18) becomes the expression 
for the logarithm of  the generating function of  the normal distribution with 
mean b and variance o -2 (Cox and Miller, 1972). 

From the exponential  Chebyshev inequality (11), we now obtain the 
upper  limit on the probabili ty as 

In Pr(U-< u) < (u - b)A + (crA)~/c~ = S(A, u) (19) 

The entropy will have a minimum with respect to A provided that u < b, 
which indicates that we are dealing with limited distributions in contrast 
to the exponential  and Cauchy distributions. The stationary condition is 

i = (2o) 

In the case a = 2  there is no restriction on u; it can be either larger or 
smaller than b, which is precisely its mean value. We are now dealing with 

3This splitting is not obtained for the initial density proportional to 1/u '~+~, contrary to what 
is claimed in Mandelbrot (1956). 
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a "compensated"  sum of jumps. For 1 < a < 2 we must discriminate between 
positive and negative jumps. Positive jumps result in negative deviations 
from the limiting value b and lead to the asymptotic distribution of the 
largest value. Then, by symmetry, negative jumps should lead to positive 
deviations, where b should be the lower bound on the variate u. However, 
no exponential Chebyshev inequality can be derived for this process, so 
that we must resort to the symmetry principle which exists between the 
distributions of  largest and smallest values (Gumbel,  1954, 1958). 

Introducing (20) into (19), we obtain the thermodynamic entropy as 

S(u)  = So -  (21) 

which is concave in u, as it should be. According to the generalized 
form of  Boltzmann's principle (14), the distribution function for the largest 
value is 

1 
k a \ Cr l A 

This extreme probability distribution belongs to the third type of  asymptotic 
distributions. 4 Therefore, by our compound Poisson process, we have now 
converted an initial probability distribution belonging to the Pareto type 
into an asymptotic one belonging to the third type. 

In the case b = 0, the variate u is negative. The probability distribution 
of  the smallest value can be obtained from the symmetry principle that the 
smallest and largest values taken from a symmetrical distribution are 
mutually symmetrical (Gumbel, 1954, 1958). The probability density of  the 
smallest value is obtained from the largest one by changing the sign of the 
variate. Since the variate is negative for the largest value, we arrive at a 
known paradoxical result that largest value is negative while the smallest 
one is positive (Gumbel, 1954, 1958). This confusion can be avoided by 
focusing our attention on the probability of the smallest value to exceed u: 

Pr(U> u ) = e x p [ - a - l  a ,or /  (22) 

Its density, 

]  23, 
bears the name of  Weibull, after the Swedish engineer who first used the 
distribution in the analysis of the breaking strength of  materials. 

4Due to deep-rooted tradition, we will continue to refer to the classification scheme according 
to which the extreme value distribution of the first type is the exponential distribution. 
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The so-called age-specific failure rate is defined as the ratio of (23) to 
(22) (Cox, 1962). In particular, the age-specific failure rate is a constant 
for the exponential distribution, implying that the failure of a certain 
component is independent of its age. For 1 < a < 2, the age-specific failure 
rate is a positive, increasing function of u, which indicates positive ageing. 

Due to the symmetry between the largest and smallest values (i.e., the 
negative of the former is equal to the latter), the probability density (23) 
will have an entropy 

a - 1 ( u \  ~/(~-x) 
S(u) = S o - - - ~  ~-~) (24) 

This can also be deduced from the fact that the third asymptotic distribution 
of  the smallest value can be derived from the second asymptotic distribution 
of the largest value by a reciprocal transformation (Gumbel, 1954, 1958) 
(see Section 4). In other words, the invariance of the entropy is a direct 
consequence of the symmetry principle relating largest and smallest value 
distributions. 

For 0 < a < 1 the integral of the generating function of the compound 
Poisson process converges without the centering term uh, while in the range 
1 < a < 2 it is absolutely necessary. This is a reflection of the fact that in 
the first case, the compound Poisson process consists of only positive jumps, 
which results in an extreme value distribution of the largest value for a 
nonnegative variate, whereas in the second case both positive and negative 
jumps occur, The positive jumps generate an asymptotic probability distribu- 
tion of the largest value for a variate which is negative in the case b = 0. 
Consequently, we are led to attribute the negative jump processes to the 
existence of an asymptotic probability distribution for the smallest value 
for a positive variate. Undoubtedly, it is this phenomenon which is at the 
root of the symmetry principle between the extreme distributions of largest 
and smallest values. 

4. SCALING LAWS FROM EXTREME-VALUE DISTRIBUTIONS 

For a = 3/2, the Weibull density (23) is also known as the law of the 
distribution of the nearest neighbor in a random distribution of particles 
(Chandrasekhar, 1943). Introducing the modulus of the force of gravitation 
IFI oc 1/r  2, where r represents distance, leads immediately to the well-known 
Holtsmark distribution. This distribution, discovered by the Danish astron- 
omer, appeared several years before L~vy's (1925) monograph introducing 
the notion of a stable law. 

Feller (1971) conjectured that the four-dimensional analogue to the 
Holtsmark distribution would be a symmetrically stable distribution with 



1466 Lavenda and Florio 

characteristic exponent a = 4/3, since in four dimensions the gravitational 
force varies inversely as the third power of the distance. We may generalize 
this to D dimensions where the characteristic exponent a = D / ( D  - 1) and 
the force varies inversely as the ( D -  1) power of the distance. 

The Weibull density can be derived from a generalized normal process, 

.,-,tDj 2. Ol2} 1 [L-~=i x,~ 
d F ( x l ,  x 2 , . . . , x D ) o C e x p  - - ~ \  0 .2 I dXl d x 2 " "  dXD (25) 

where D = ot/(ot - 1) and [D] stands for the largest integer -<D. Introducing 
the square of the distance in Euclidean space, 

D 
r2= E x2 

i~ l  

into (25) and noting that the Jacobian of the transformation 
dXl dx2" " �9 dxo  oc r ~  dr, we see that it transforms into (23). 

Consider a polymer chain in D dimensions. The probability that the 
radius r lies within the interval dr is 

q~ f ( r )  ro D k D \ r o /  J (26) 

where ro is the unperturbed radius of the chain. If there are n monomers, 
each separated by a distance a, then ro = nl/2a. The total repulsive energy 
in D dimensions is (de Gennes, 1979) 

To"n 2 
E -  rO (27) 

where o" is the excluded volume. Introducing (27) into the radial distribution 
(26) converts a Weibull density for the smallest value into an asymptotic 
distribution of the second type for the largest value of E, viz. 

f ( E ) = D  E 2 exp - D  

with characteristic exponent a =1/2,  where the 
energy is 

To" n2_D/2 
Emax - - -a  D 

According to (15), the entropy is 

(28) 

maximum repulsive 

Elrnax 
S ( E )  = So (29) 

D E 
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The second law then defines the temperature as 

Emax= T -~ (30) 
S ' ( E )  = D E  2 

which upon rearrangement gives 

( O" )1/2 
E = ~ n 2-D/2 T 

Since this must be the same as the expression for the repulsive energy (27), 
we obtain the expression 

r D = (DtraD)l /2n I+D/4 (31) 

for the radius of  gyration re. Therefore, the radius scales as re - n ~ with 
the characteristic exponent v = (4 + D ) / 4 D .  

In a dilute solution of separate coils in a good solvent, Flory has shown, 
by a mean-field argument, that the radius of  gyration is related to the degree 
of  polymerization according to re ~ n ~, where v~ = 3 / ( D  + 2). Flory derived 
this formula by minimizing the total energy with respect to the radius, where 
the total energy is the sum of the total repulsive energy (27) and an attractive 
term representing the elastic energy which is proportional to the square of  
the radius (de Gennes, 1979). This variational condition is equivalent to 
the second law, (30), which implicitly takes into account the dynamical 
balance through the definition of  the temperature. 

A comparison between the two characteristic exponents is given in 
Table I. For dimensions D = 2 and D = 4 the two characteristic exponents 
are identical, while for D - - 3 ,  the difference is well within experimental 
error. For dimensions D > 4, v decreases more slowly than vF. 

Alternatively, from the probability density (26), we obtain the entropy 
decrease due to elongation as 

' ( r ) ~  
S(r) = So-  70 (32) 

Table I. Comparison of Characteristic Exponents 

Dimension D vr=3/(D+2) v=(4+D)/D I(~,~- ~)/~FI 

2 3/4 3/4 0 
3 3/5 7/12 2.78% 
4 1/2 1/2 0 
5 3/7 9/20 5% 
6 3/8 5/12 11.11% 
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Applying the second law gives 

r D - I  /~ 

- S ' ( r ) -  ro D - T 

where X is the force conjugate to r. But since X = - E ' ,  where E is the 
repulsive energy given by (27), we immediately obtain (31) and consequently 
1, = (4+ D)/4D. 

5. COMBINATORIAL DEFINITION OF ENTROPY 

So far our only justification for calling S(r) an entropy lies in its 
property of concavity. Although this is the defining property of the entropy 
(Lavenda and Dunning-Davies, 1990), it is of interest to relate it to probabil- 
ity in a way in which Boltzmann did; that is, to the logarithm of the number 
of ways of selecting a given number of objects from a parent population. 
Since this cannot be done in general, we must generalize the concept of 
entropy in a way which liberates it from being defined as the logarithm of 
a combinatorial factor while retaining its relation to probability. 

Consider a random walk along integer points on the real axis. The 
system is initially placed at the origin and it is equally probable for there 
to be a transition to the right or to the left. The probability of being at r 
after n steps is 

provided r and n have the same parity; otherwise p(r) = 0. In the limit of 
large n this tends to the normal distribution 

1 [ r 2,~,/2 
p(r) = (n~r/2),/2 e x p ~ - ~ n  J (33) 

provided r is of the order of x/n. 
If, however, we ask for the probability that a point r > 0 is reached for 

the first time after n steps, we have (Feller, 1968) 

f ( r ) = r p ( r ) = r (  n ) 1  
n (n+r) /2  2" 

(34) 

This distribution does not tend to the normal density (33) in the limit of 
large n, but, rather, to the Rayleigh density, which is an asymptotic distribu- 
tion for the smallest value of r. 
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According to Boltzmann's principle, the entropy is defined as (Lavenda, 
1991) 

S(r )=ln( (n+;) /2  ) 

For n sufficiently large, we may use Stirling's approximation to obtain 

S ( r ) = n l n n  n+r [ n + r \  n - r  I n - r \  
- 2 lnt,--7-)---7-lnt,--~ - )  (35) 

showing that the ratio r/n--~r plays the role of an order parameter. 
Expression (35) is the entropy of mixing and in terms of  it we may write 
the distribution (34) as 

In f ( r )  = ln(r/n) + S(r) - So (36) 

where 

S0=n  In2 

is the maximum value of the entropy. However, on account of  the first term 
in (36), it will only be a proper probability density in the limit r~ n << 1 
where the entropy is approximated by the quadratic expression 

r 2 

S( r )  = S o - - -  
2n 

The resulting probability density bears the name of Rayleigh (Lord Rayleigh, 
1880, 1919), who first derived it in connection with the problem of random 
vibrations in two dimensions. The now continuous density (36) has a tail 
distribution given by 

1 - F(r) = exp[S(r) - So] (37) 

as can easily be seen by differentiation. 
The Rayleigh density is the stationary solution to the Fokker-Planck 

equation (Stratonovich, 1963) 

, ~ [ ( '  q i  oil 
D at=-ar Lkr-n/ -~rJ 

in the case of a vanishing probability current, where @ is the diffusion 
coefficient. The corresponding Langevin equation is 

~-- - 9 ( r - ! ]  + (29)'J2w (38) 
\n  rl  
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where w is a Wiener process. This term describes the influence of  random 
fluctuations. In its absence the stochastic differential equation (38) reduces 
to a deterministic rate equation having a nontrivial stationary solution given 
by ro = x/if, or in terms of the order parameter, 

1 
~O=~n n (39) 

If  ~ is to retain its interpretation as an order parameter, we must explain 
the reason for there being the nonvanishing stationary value (39). 

Returning to the expression for the entropy of  mixing (35), we have 

1.  / 1 + ~:'~ X (40) -S'(~) =-~ ,n~ ~_ (} :-~ 

on the strength of  the second law. Solving for ~, we get 

~ = t anh  -~ 

This equation has the same form as in the mean-field approximation to the 
Weiss-Ising model of  a ferromagnetic (Griffiths et al., 1966). Suppose that 
the force X is given by the linear phenomenological  relation 

X = ToG (42) 

which would correspond to the zero magnetic field situation in the mean-field 
approximation, where Tc is the critical temperature. It is now evident that 
(41) possesses nonzero solutions only for temperatures T < To. For small 
values of the order parameter, the hyperbolic tangent may be approximated 
by the first two terms in its Taylor series expansion. We thus obtain 

Go = T[3(T~-T)] 1/2 
T3 c (43) 

which is only possible provided T <  T~; otherwise, we have the trivial 
solution Go = 0. Now, (43) must be consistent with (39) and this fixes the 
number of steps as 

r3c 
n - 3 T2( Tc - T) (44) 

which becomes infinite as T'[ To. This shows that the order parameter tends 
to zero as the square root of the difference in the temperature, while the 
number of random steps, which is proportional to the time elapsed, tends 
to infinity as the inverse of  the temperature difference. 
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Although the interpretation of the mean-field approximation to a lattice 
spin system given by (41) is well known, it is generally assumed that the 
probability density centered about the metastable state has the normal form 
(33). On the contrary, we have shown that the pertinent probability density 
is the extreme value density: 

r [ r2'~ 
f (r )=neXpk-~n] (45) 

for the smallest value of the order parameter. 

6. T H E R M O D Y N A M I C S  OF EXTREME VALUES 

One of the two basic parameters which characterize extreme value 
distributions is the return period r (Gumbel, 1954, 1958). It is defined as 

1 
r(r) (46) 

-F(r) 

In flood control ~-(r) would represent the mean time interval between two 
discharges of a river. 

According to (14), the second asymptotic distribution for the largest 
value is 

F(r)=exp[S(r)-So]=exp[-(rO) k ] II (47) 

while from (22), the tail of the third asymptotic distribution for the smallest 
value is 

[ 1 - F(r) = exp[S(r) - So] = exp - -~ III (48) 

In (47), O=cr((1-a)/a) ~/k and k = a / ( 1 - a ) ,  while in (48), O =  
cr((a-1)/a) ~/k and k=a / (a -1 ) .  Note that whereas the characteristic 
exponent k can be greater or less than one in the first case, k must be 
necessarily greater than one in the second case. 

In Section 1 we have defined the expected largest value r, according 
to (3), or equivalently as 

n[1-F(r.)]=l 

Alternatively, the expected smallest value rl is defined by (Gumbel, 1954, 
1958) 

nF(rl) = 1 
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The definition of the expected largest value is just another way of writing 
the return period (46). The expected largest value of the third distribution 
is 

S o - S ( r . )  =In n III 

o r  

r. = O(ln n) 1/k III 

Since k >  1, the expected largest value increases more slowly than In n. 
Likewise, the entropy change due to the smallest value of the second 
asymptotic distribution increases as the sample size increases: 

So - S(rl) = In n II 

o r  

O 
rl - (In n) ~/k II 

In both cases, the extreme values increase with increasing sample size 
and the entropy change increases as the logarithm of the sample size, which 
can also be interpreted as the amount of time elapsed. Therefore, the 
logarithm of the sample size is the yardstick for determining the entropy 
change. This behavior is analogous to our previous interpretation of the 
expected time of exit from the domain of attraction of a stable stationary 
state, where the logarithm of the expected exit time is equal to the entropy 
difference between the stationary state and the state with maximum entropy 
on the boundary (Lavenda, 1985). In extreme value theory, the correspond- 
ing relation between the logarithm of the return period and the entropy 
change is 

In ~'(r*) = S o -  S(r*) (49) 

where r* = r,, the largest expected value of the third asymptotic distribu- 
tion, while r* = rl, the smallest expected value of the second asymptotic 
distribution. 

The second basic parameter which characterizes extreme value distribu- 
tions is the intensity/x(r) (Gumbel, 1954, 1958). In mortality statistics, 

f ( r )  
Ix(r) dr = - -  dr (50) 

1 - F ( r )  

is the probability that a person aged r will die in the interval between r 
and r+dr. The distribution F(r)  has density f ( r )  and/~(r) is referred to 
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as the "force of mortality," or simply as the intensity function. The intensity 
/~ elicits a thermodynamic interpretation for the third asymptotic distribution 
for the smallest value. Differentiating the tail (48) of the third asymptotic 
distribution, we obtain the probability density as 

x(~) f(r) = ~ exp[S( r )  - So] 

Then, according to the definition of the intensity (50), we find 

x(r) 
~ ( r )  = - -  

T 

The intensity is the thermodynamic force of the third asymptotic distribution 
for the smallest value, which is necessarily a positive quantity. This condition 
was used in the last section to ensure the existence of a nontrivial solution 
to (41). In the case of the second asymptotic distribution, the thermodynamic 
force is negative and hence cannot be related to the intensity. 

7. PERSPECTIVES 

We have shown that the entropy expressions that are related to 
asymptotic distributions for extreme values are generalizations of 
Boltzmann's combinatorial definition of the entropy, which for small fluctu- 
ations corresponds to the case D = 2, In general, we can expect nonintegral 
values of D that cannot be derived from any combinatorial formula by 
using Stirling's approximation and developing the logarithmic expressions 
in a Taylor series. We have therefore relied on the characterizing property 
of concavity to identify the entropy (Lavenda and Dunning-Davies, 1990). 

Although there are numerous examples of extreme value distributions 
in the social sciences, relatively few have been identified in the physical 
sciences thus far. A classic exception is the Cauchy distribution for the 
energy distribution of unstable states in the reaction of decay products, 
commonly known as the Lorentz distribution (Zolotarev, 1986). We have 
shown that the order parameter in an order-disorder transition is governed 
by an asymptotic distibution of the third type for the smallest value. Extreme 
value distributions should also find a role in critical phenomena in which 
a transition point can be modified by stochastic processes such as the 
buildup of nucleation centers, structural flaws, etc. 

Finally, it is worth noting that since the extreme value distributions 
are expressed in terms of the entropy decrease alone, they can only account 
for the statistics of the process. External interactions that modify the energy 
of the system can be taken into account by the method of conjugate 
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dis t r ibut ions  (Lavenda ,  1991), which t ransforms,  for example,  an  isolated 
system into a closed system by p lac ing  it in contact  with a heat  reservoir. 
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